
J .  Fluid Mech. (1984), vol. 147, p p .  465-469 

Printed in Great Brilaia 

465 

REVIEWS 

Computational Methods for Turbulent, Transonic, and Viscous Flows. Edited by 

Computational Methods for Fluid Flow. By ROGER PEYRET and THOMAS D. 

Computational fluid dynamics, often abbreviated CPL), is a mode of investigation 
very definitely on the rise these days. Although this may be seen as simply another 
manifestation of a current, generally enhanced, interest in scientific computation, fluid 
mechanics has always seemed particularly well suited for ‘ numerical experimenta- 
tion’: the basic laws governing fluid motion are usually well established, whereas the 
variety of phenomena accessible within the solution set is largely unknown. Typically 
the achievable degree of nonlinearity increases with the size and speed of the available 
computer. And, with the strides in hardware technology taken even during the past 
decade, regimes of fluid flow of considerable interest arc yielding to computation, and 
results that hardly are accessible by any other method are being obtained. 

The successful CFD investigation ideally incorporates a balanced mix of the 
following ingredients : ( I )  an awareness of fluid-dynamical problems of scientific 
interest and/or practical importance ; (2) an understanding of the requisite physical 
laws to be used; (3) an appreciation for numerical analysis issues leading to the choice 
and verification of an algorithm; (4) a reasonable level of ‘craftsmanship’ in the 
implementation; ( 5 )  a perceptive analysis and diagnosis of results ; and (6) predictions 
and recommendations for further work both theoretical, experimental and numerical. 
Many papers and books on CFD unfortunately fall short of this ideal. 

The volume edited by Essers is a collection of six articles based on lecture series 
given by various authors a t  the von Karman Institute during the Spring of 1981. 
The titles of the articles and their authors are: 

J. A. ESSERS. Hemisphere/Springer, 1983, 360 pp. DM 115. 

TAYLOR. Springer, 1983, 358 pp. DM 92. 

‘Numerical methods for coordinate generation based on a mapping technique ’ 

‘Introduction to multi-grid methods for the numerical solution of boundary 

‘Higher level simulations of turbulent flows’ by J .  H. Ferziger; 
‘Numerical methods for two- and three-dimensional recirculating flows ’ by 

‘The computation of transonic potential flow’ by T. J. Baker; 
‘The calculation of steady transonic flow by Euler equations with relaxation 

Of these, the two longest by Ferziger and Baker come closest to the ‘ ideal ‘ outlined 
previously, and hence are the most interesting. Both give comprehensive overviews 
of their subject matter and seem very useful for an introduction. The problem with 
turbulence calculations, of course, is that even the mightiest computers are barely 
able to handle Reynolds numbers of genuine interest, and the results of simulating 
model equations are somehow never entirely convincing. The computer is a forgiving 
piece of equipment. Unlike real fluids in the laboratory it will happily generate flows 
that are physically unrealizable. 

Ferziger takes a largely pragmatic view, as do many practitioners of turbulence 
modelling, but then is forced to rcly on laboratory experiments for ‘verification ’ 

by R. T. Davis; 

value problems’ by W. Hackbusch; 

R. I. Issa; 

methods’ by E. Dick. 
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(sometimes, less charitably, this is called ‘ post-diction ’) and adjustable parameters. 
The article does, however, also contain some discussion of what is called ‘full 
simulation’, which means that one uses the full Navier-Stokes equations. Except for 
an index, no attempt is made in this volume to achieve coherence between the various 
contributions, and, except for being physically bound together between the same two 
covers, the articles are completely independent. This could just as well have been a 
volume in a review journal. 

If one looks a t  the actual book literature on CFD, the volume by Peyret & Taylor 
being a recent addition in the Springer Series in Computational Physics, one discovers 
not inconsiderable bias towards item (3) on my list: methods. Books on CFD tend 
to be written much like the ‘mathematical methods’ texts that  preceded them. They 
are often scholarly and frequently useful, but carry connotations of only being ‘part 
of the story’. Peyret & Taylor’s volume is no exception. While probably valuable in 
a graduate course, i t  can hardly stand alone. The overview of methods given is 
extensive, although of varying depth (the comprehensive title notwithstanding), e.g. 
free-surface flows are not discussed, but the discussion of results is too light. There 
is little comparison of various different numerical approaches to a given physical 
problem. A case in point : section 1.4, entitled ‘Relationship between Numerical 
Approaches’, is just four pages long! The amount of numerical analysis seems about 
right for people who want to do (as opposed to theorize about) numerical calculations. 
There are no ‘ convergence theorems’ here, no Sobolev spaces etc. Unfortunately, 
possibly in an attempt to please a wider audience, this book tends not to  voice definite 
opinions about particular methodologies, thus leaving the reader in search of a 
coherent point of view somewhat adrift. Nevertheless, in spite of these shortcomings, 
which the book shares with scores of others in the genre, what is done in this volume 
is done competently, and I suspect that  the book can and will grow through future 
editions to become a valued reference work in numerical methodology. 

I n  summary, the collection edited by Essers is essentially a set of review articles 
written in journal format with the more comprehensive ones being the more 
interesting. The volume should be acquired by individuals only on the basis of interest 
in one or more of the topics taken up, but should be acquired by libraries because 
it contains some good articles that  presumably are not available elsewhere. The text 
by Peyret & Taylor would be useful as one of several for a graduate course in CFD, 
and for reference and study by researchers in the field. It is a methods book with 
limited coverage and needs supplementing both with regard to  methods not covered 
and particularly with regard to applications. It is not a theoretical numerical-analysis 
study. 

Nominally CFD spans a wide spectrum of topics ranging from practically motivated 
calculations in specific applications to the elucidation of basic physical phenomena 
and mathematical mechanisms within the equations for fluid flow. It is without doubt 
primarily in this latter mode that most of the scientific excitement is to be found. 
Xumerical experiments that turn up such objects as solitons or strange attractors 
are typically done on very idealized systems! There are many interesting issues here 
(some of them quite deep, i t  would appear, including questions of methodology), 
which are to  my knowledge not treated at all in the current book literature. Such 
items are possibly closer to the heart of the subject than much of the routine material 
treated in the methods books one currently sees. As the field of CFD matures one 
would hope to see reflected in the book literature a shift in subtlety and depth away 
from what has to be an immediate response to pressures of the marketplace towards 
more basic scientific issues. 

HASSAN AREF 



Reviews 467 

Regular and Stochastic Motion. By A. J. LICHTENBERG and M. A. LIEBERMAN. 
Springer, 1983. Applied Mathematical Sciences Series no. 38. 499 pp. DM 108 
or US $44.60. 

At first sight, this book, despite its title, which might suggest analogy with laminar 
and turbulent flow, has apparently little direct contact with fluid mechanics. The 
authors write in the Preface that ‘the main emphasis is on intrinsic stochasticity in 
Hamiltonian systems, where the stochastic motion is generated by the dynamics itself 
and not by external noise’. And, although a final chapter of some sixty pages is 
devoted to ‘Dissipative Systems ’ which takes the Lorenz system as a prime example, 
and which makes ritual reference to the problem of ‘the Transition to  Turbulence’ 
in a concluding section, i t  is the classical Hamiltonian systems of nonlinear oscillation 
of two and more degrees of freedom which provide the starting point for the book, 
and the base from which the central chapters are constructed. 

This should not necessarily diminish the potential interest of the subject from the 
fluid-dynamical point of view. As pointed out recently by H. Aref in this Journal [143, 
1-2 11, the familiar equations for particle trajectories in any two-dimensional 
incompressible flow, viz 

where $(x, y ,  t )  is the stream function of the flow, constitute a one-degree-of-freedom 
Hamiltonian system, with Hamiltonian @; if the flow is unsteady (i.e. @ depends 
explicitly on t ) ,  then the system is non-autonomous, but i t  is then equivalent to an 
autonomous Hamiltonian system with two degrees of freedom, and the accumulated 
knowledge concerning such systems since the time of Poincark must tell us something 
about the relationship between Lagrangian and Eulerian descriptions of fluid motion, 
which, as anyone who has given a first course in Fluid Mechanics would readily admit, 
is at the heart of the subject. 

And there is no doubt that  there have been dramatic advances in our understanding 
of Hamiltonian dynamics over the last thirty years or so, since Kolmogorov (1954) 
conjectured that a t  least some two-dimensional integral surfaces in the four- 
dimensional phase space of a two-degrees-of-freedom Hamiltonian system, perturbed 
about an integrable state, would survive the perturbation, a conjecture validated by 
the work of Kolmogorov’s student V. I. Arnold (1961-1963: Sou. Math. Dokl. 2,501 ; 
3 ,  136) and independently by J. Moser (1962: Nachr. Akad. Wiss. Gott. Math.-Phys. 
Kl. 1). These surviving surfaces are the famous ‘KAM tori’, and they survive 
provided that the associated winding number q (i.e. the ratio of the natural 
frequencies in the unperturbed system) is ‘sufficiently irrational’ in the sense that 

(q-m/nI > cn-B (2) 

for all integers m, n, and for some constant c related to the magnitude of the 
perturbation. If q is rational, or so nearly rational that the inequality (2) is violated 
for some choice of m, n, then the KAM curves (in any plane of section) break up into 
island chains of extraordinary complexity, exhibiting structure on all lengthscales 
and associated self-similarity that lends itself to a type of renormalization-group 
analysis. This break-up of KAM surfaces signals the transition from regular to chaotic 
orbits in phase space, like the transition from laminar to turbulent flow in unstable 
fluid systems. 

Of course, the equations ( 1 )  do not contain any of the real dynamics of fluid 
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systems; they are merely kinematic in content. Nevertheless they are relevant to the 
diffusion of any convected scalar field which (in the absence of molecular diffusion) 
will be limited by the existence of KAM surfaces which act like impenetrable barriers, 
a phenomenon that may be observed in the computations of Aref (loc. cit.). 

But the relevance to fluid mechanics of Hamiltonian dynamics is not limited to 
diffusion problems: as recognized by Poincare himself, a system of N point vortices 
K~ a t  positions xi = (zjr y i )  evolves as an  autonomous Hamiltonian system of N 
degrees of freedom, with Hamiltonian 

There are four integral invariants, and the system is (in general) non-integrable if 
N 2 4 ; so the phase trajectories (and, in this case, this means the paths of the vortices 
themselves) are in general chaotic. An understanding of Hamiltonian systems of a t  
least four degrees of freedom should provide insights into this type of problem. The 
phenomenon of ‘Arnold diffusion’ - a sort of diffusive meandering of trajectories 
through a network of KAM surfaces in the phase space - may play an important role 
in this context. 

Lichtenberg and Lieberman provide a masterful survey of these topics. They start 
with a general overview in Chapter 1 ,  which conveys the flavour of the subject 
without indigestible detail. Chapter 2 treats canonical perturbation theory and the 
root problem of small denominators arising through resonant interactions between 
different degrees of freedom of a system. It is the divergences associated with these 
small denominators that  leads to the destruction of KAM surfaces. The nonlinear 
oscillator with two degrees of freedom can be reduced to  the problem of an iterated 
area-preserving mapping of a plane onto itself, and this problem is treated in 
Chapter 3. Here the fascinating generic structure of such systems is revealed, with 
the hierarchies of elliptic islands separated by hyperbolic fixed points, which is where 
the chaos tends to be localized. Chapter 4 treats the transition from regular to chaotic 
behaviour as the perturbation parameter k of a dynamical system passes through a 
critical value k, ; this leans heavily on the seminal work of J. Greene (1979 : J .  Math. 
Phys. 20, 1183) who succeeded in establishing the relationship between the break-up 
of a KAM torus of winding number q and the loss of stability of the periodic orbits 
associated with a sequence of rationals { p i }  approximating q. When k = k ,  the KAM 
surface is apparently crinkled on all lengthscales (Shenkcr & Kadanoff 1982; J .  Stat. 
Phys. 4, 631) and its spectrum exhibits self-similarity under successive expansion of 
scale. The intimate interaction between analytical and numerical work is a charac- 
teristic of these papers which is well conveyed by L. & L.’s treatment. 

Chapter 5 treats diffusion in regions of the phase space in which the motion is 
stochastic, and Chapter 6 extends the treatment to three or more degrees of freedom, 
where Arnold diffusion is a new feature. I n  a stochastic region, particle trajectories 
diverge exponentially (in contrast to the linear divergence in regular regions), and 
an analogy with turbulent diffusion may be drawn. These chapters treat such 
concepts as Liapunov exponents and Kolniogorov entropy, and the question of 
whether the system behaviour can be described in terms of a diffusion equation in 
‘action space’. 

It will be evident from this very brief description that a fascinating range of topics 
is covered in the book, and that much may be of potential, if not actual, interest to 
fluid dynamicists. The book is beautifully illustrated with many varied examples of 
systems exhibiting regular and chaotic behaviour and the transition between the two, 
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and, a t  a superficial level, one can gain a good impression of the current state of 
development of the subject. If one wants to do more than this, and gain understanding 
in depth, the book will not be sufficient on its own: the treatment of fundamental 
topics will be found too brief and compressed by anyone who is not already 
thoroughly familiar with the material. If one is prepared to consult the key original 
papers (such as those referred to in this review), then the book becomes more easily 
comprehensible; but it will undoubtedly be hard reading for anyone who does not 
have access to these earlier papers or to more recent reviews. 

Take for example the discussion of the behaviour of trajectories near a hyperbolic 
singular point of an area-preserving mapping, as given on p. 170. The authors define 
the incoming and outgoing trajectories H+ and H- and then baldly assert that  “the 
H- curve leaving one hyperbolic point generically intersects the H+ curve arriving 
at the neighbouring . . .hyperbolic point”. Well, this may be true, but no justification 
is given, and one would undoubtedly have to search back to earlier references to 
understand why i t  is true. The fact that one intersection implies an infinity of others 
in the neighbourhood of the hyperbolic point makes this a rather crucial assertion 
as regards the developments of subsequent chapters, and one which merits closer 
scrutiny than it gets here. 

Likewise, one may criticize the discussion of the KAM theorem as given in section 
3.2. The discussion on pp. 162-164 is extraordinarily difficult to follow, and that is 
unfortunate, since it is central to the whole book. The theorem is of course a difficult 
one, and no truly simple proof of it has yet been given. However, once the problem 
is stated in terms of two-dimensional mappings, i t  is purely geometric in character 
(as the 1962 paper of Moser made clear), and a purely geometric discussion avoiding 
dynamical terminology (i.e. such words as action, frequency, Hamiltonian, generating 
function) is then desirable in the interests of clarity and simplicity. The discussion 
of this text is conducted a t  a level of dynamical maturity that is seldom found in 
‘non-expert ’ researchers, far less in the graduate students a t  whom the book is partly 
directed. 

Despite these slight reservations, I have a very favourable impression of the book 
as a whole, which contains a vast range of fascinating material that  is likely to become 
of increasing relevance in fluid-mechanical contexts. The authors are to be 
congratulated in having provided an authoritative account of topics which are of 
great current interest in a variety of fields. 

H. K. MOFFATT 


